International TOR Rectifier

IR2184(4)(S)

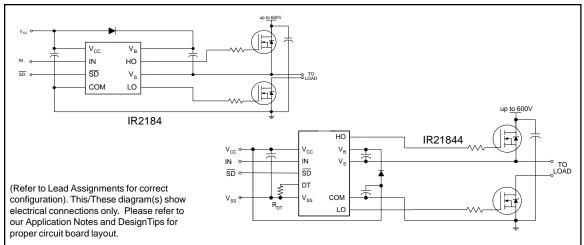
HALF-BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout for both channels
- 3.3V and 5V input logic compatible
- Matched propagation delay for both channels
- Logic and power ground +/- 5V offset.
- Lower di/dt gate driver for better noise immunity
- Output source/sink current capability 1.4A/1.8A

Packages 14-Lead PDIP IR21844 8-Lead SOIC IR21848 8-Lead PDIP IR2184 14-Lead SOIC IR21844S

Description


The IR2184(4)(S) are high voltage, high speed power MOSFET and IGBT drivers with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable rugge-dized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for

IR2181/IR2183/IR2184 Feature Comparison

Part	Input logic	Cross- conduction prevention logic	Dead-Time	Ground Pins	Ton/Toff
2181	HIN/LIN	no	none	COM	180/220 ns
21814	HIIN/LIIN	110	none	VSS/COM	100/220115
2183	HIN/LIN	V00	Internal 500ns	COM	180/220 ns
21834	HIIN/LIIN	yes	Program 0.4 ~ 5 us	VSS/COM	100/220115
2184	IN/SD	VOC	Internal 500ns	COM	680/270 ns
21844	114/30	yes	Program 0.4 ~ 5 us	VSS/COM	000/2/0118

minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Min.	Max.	Units
V _B	High side floating absolute voltage		-0.3	625	
Vs	High side floating supply offset voltage		V _B - 25	V _B + 0.3]
Vно	High side floating output voltage		V _S - 0.3	V _B + 0.3	
Vcc	Low side and logic fixed supply voltage		-0.3	25	V
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3] V
DT	Programmable dead-time pin voltage (IR21	844 only)	V _{SS} - 0.3	V _{CC} + 0.3]
VIN	Logic input voltage (IN & SD)		V _{SS} - 0.3	V _{SS} + 10]
V _{SS}	Logic ground (IR21844 only)		V _{CC} - 25	V _{CC} + 0.3]
dVs/dt	Allowable offset supply voltage transient		_	50	V/ns
PD	Package power dissipation @ T _A ≤ +25°C	(8-lead PDIP)	_	1.0	
		(8-lead SOIC)	_	0.625	1
		(14-lead PDIP)	_	1.6	W
		(14-lead SOIC)	_	1.0	
Rth _{JA}	Thermal resistance, junction to ambient	(8-lead PDIP)	_	125	
		(8-lead SOIC)	_	200	1
		(14-lead PDIP)	_	75	°C/W
		(14-lead SOIC)	_	120	1
TJ	Junction temperature		_	150	
TS	Storage temperature		-50	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V_S and V_{SS} offset rating are tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
VB	High side floating supply absolute voltage	V _S + 10	V _S + 20	
Vs	High side floating supply offset voltage	Note 1	600	
V_{HO}	High side floating output voltage	Vs	V _B	
Vcc	Low side and logic fixed supply voltage	10	20	
V_{LO}	Low side output voltage	0	Vcc	V
V _{IN}	Logic input voltage (IN & SD)	V _{SS}	V _{SS} + 5	
DT	Programmable dead-time pin voltage (IR21844 only)	V _{SS}	Vcc	
V _{SS}	Logic ground (IR21844 only)	-5	5	
T _A	Ambient temperature	-40	125	°C

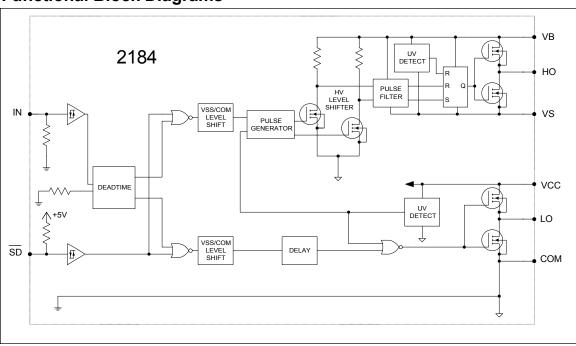
Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

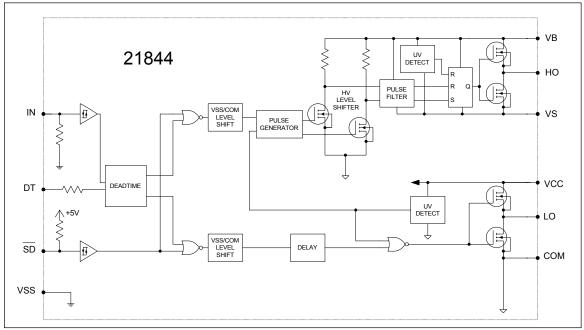
Note 2: IN and SD are internally clamped with a 5.2V zener diode.

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15V, V_{SS} = COM, C_L = 1000 pF, T_A = 25°C, DT = VSS unless otherwise specified.

Symbol	Definition		Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	680	900		Vs = 0V
toff	Turn-off propagation delay		270	400		V _S = 0V or 600V
tsd	Shut-down propagation delay	_	180	270	1	
MTon	Delay matching, HS & LS turn-on		0	90	nsec	
MToff	Delay matching, HS & LS turn-off		0	40		
t _r	Turn-on rise time	_	40	60		V _S = 0V
tf	Turn-off fall time	_	20	35		Vs = 0V
DT	Deadtime: LO turn-off to HO turn-on(DTLO-HO) &	280	400	520		RDT= 0
	HO turn-off to LO turn-on (DTHO-LO)	4	5	6	μsec	RDT = 200k
MDT	Deadtime matching = DTLO - HO - DTHO-LO	_	0	50	ncoc	RDT=0
		_	0	600	nsec	RDT = 200k

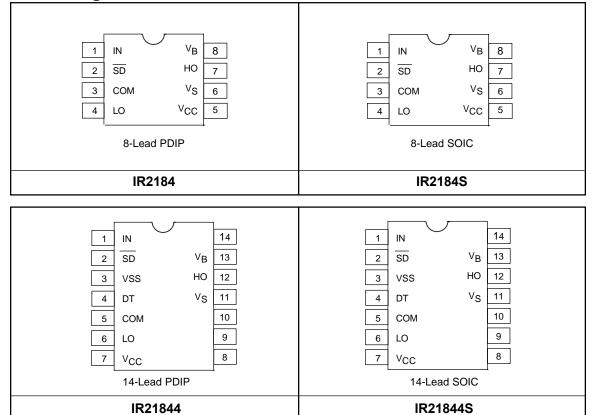

Static Electrical Characteristics

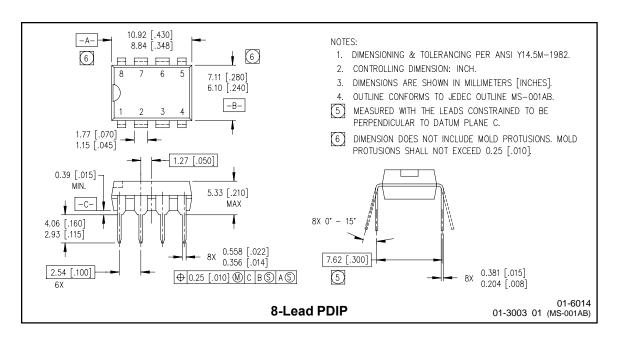

 V_{BIAS} (V_{CC} , V_{BS}) = 15V, V_{SS} = COM, DT= V_{SS} and T_A = 25°C unless otherwise specified. The V_{IL} , V_{IH} and I_{IN} parameters are referenced to V_{SS} /COM and are applicable to the respective input leads: IN and \overline{SD} . The V_O , I_O and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

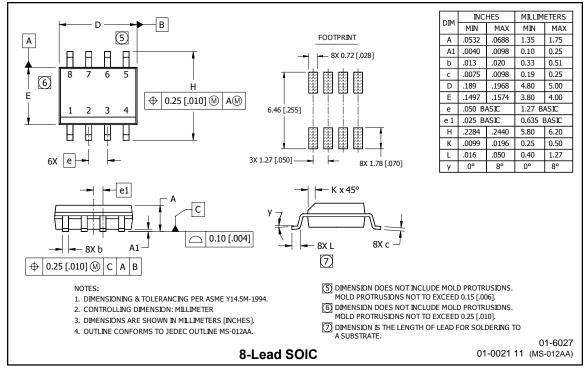
Symbol	Definition		Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" input voltage for HO & logic "0" for LO	2.7	_	_		V _{CC} = 10V to 20V
V _{IL}	Logic "0" input voltage for HO & logic "1" for LO	_	_	0.8		V _{CC} = 10V to 20V
V _{SD,TH+}	SD input positive going threshold		_	_	.,	V _{CC} = 10V to 20V
V _{SD,TH} -	SD input negative going threshold	_	_	0.8	V	V _{CC} = 10V to 20V
VoH	High level output voltage, V _{BIAS} - V _O	_	_	1.2		$I_O = 0A$
V _{OL}	Low level output voltage, VO	_	_	0.1		I _O = 0A
I _{LK}	Offset supply leakage current	_	_	50		$V_{B} = V_{S} = 600V$
I _{QBS}	Quiescent V _{BS} supply current	20	60	150	μA	V _{IN} = 0V or 5V
IQCC	Quiescent V _{CC} supply current	0.4	1.0	1.6	mA	V _{IN} = 0V or 5V
I _{IN+}	Logic "1" input bias current	_	5	20		$IN = 5V, \overline{SD} = 0V$
I _{IN-}	Logic "0" input bias current	_	1	2	μA	$IN = 0V, \overline{SD} = 5V$
V _{CCUV+} V _{BSUV+}	V _{CC} and V _{BS} supply undervoltage positive going threshold	8.0	8.9	9.8		
V _{CCUV} - V _{BSUV} -	V_{CC} and V_{BS} supply undervoltage negative going threshold	7.4	8.2	9.0	V	
V _{CCUVH}	Hysteresis	0.3	0.7	_	\ \	
V _{BSUVH}						
I _{O+}	Output high short circuit pulsed current	1.4	1.9	_		$V_O = 0V$,
						PW ≤ 10 µs
I _O -	Output low short circuit pulsed current	1.8	2.3	-	A	$V_0 = 15V$,
						PW ≤ 10 µs

IR2184(4) (S)

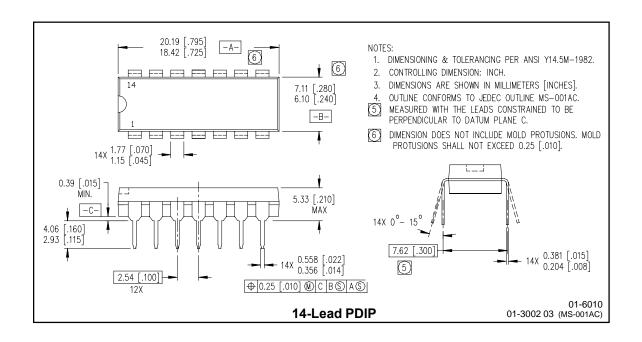
Functional Block Diagrams

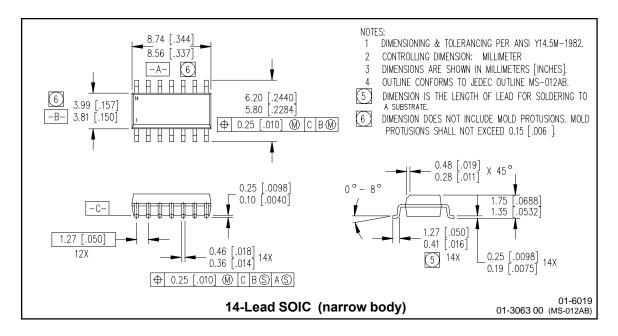



Lead Definitions


Symbol	Description
IN	Logic input for high and low side gate driver outputs (HO and LO), in phase with HO (referenced to COM
	for IR2184 and VSS for IR21844)
SD	Logic input for shutdown (referenced to COM for IR2184 and VSS for IR21844)
DT	Programmable dead-time lead, referenced to VSS. (IR21844 only)
VSS	Logic Ground (21844 only)
V _B	High side floating supply
НО	High side gate drive output
Vs	High side floating supply return
V _{CC}	Low side and logic fixed supply
LO	Low side gate drive output
COM	Low side return

Lead Assignments




IR2184(4) (S)

IR2184(4) (S)

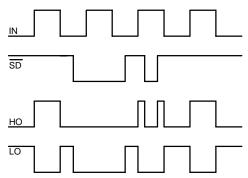


Figure 1. Input/Output Timing Diagram

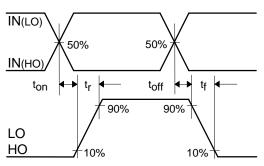


Figure 2. Switching Time Waveform Definitions

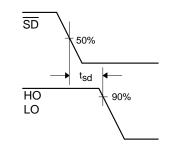


Figure 3. Shutdown Waveform Definitions

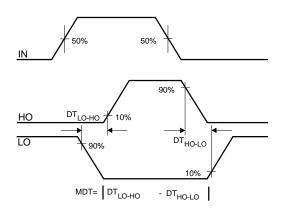


Figure 4. Deadtime Waveform Definitions

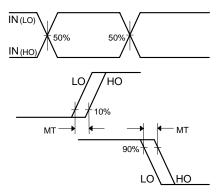


Figure 5. Delay Matching Waveform Definitions

International

IR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 7/24/2001